

New XRF Developments Enhancing ENIG and ENEPIG Measurement Throughput and Precision

Zach Dismukes *Global Product Manager* Bowman Analytics, Inc

What is XRF?

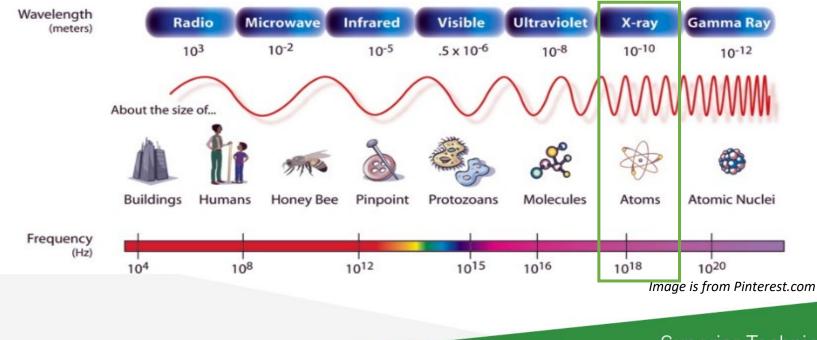
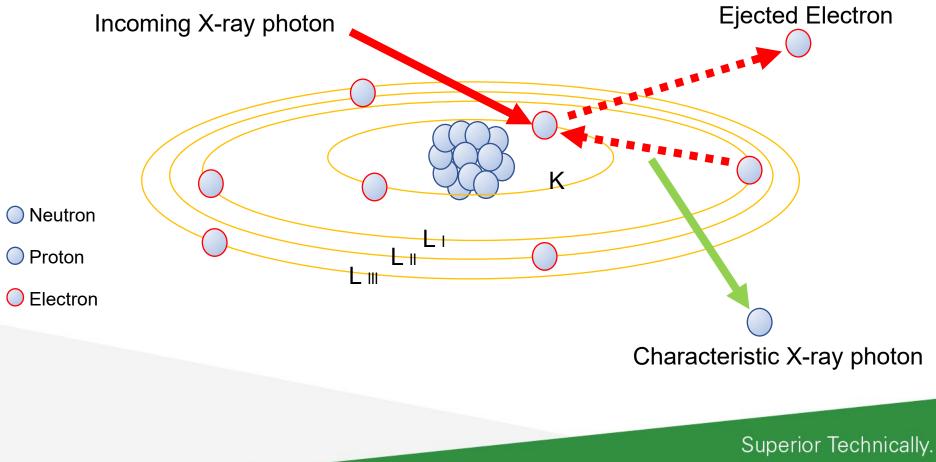

- XRF is a spectroscopic analytical method for measuring elemental composition and plating thickness
- Sensitive to all metallic elements (AI U)
- Can measure thickness from sub-nanometer up to microns of thickness
- Performs thickness & composition simultaneously, up to 5 layers and 25 elements

Image is from Pinterest.com


What are X-rays

- A type of radiation that is part of the electromagnetic spectrum
- X-Rays have a wavelength ranging from 0.03 to 3 nanometers

Characteristic Fluorescent Radiation

Supported Locally.

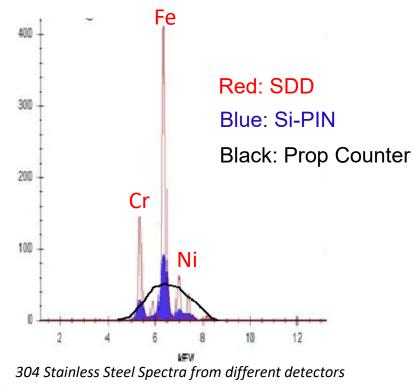
IPC - 4552A Instrument Requirements

• Specifies the use of XRF to verify process and gage capability

 $C_{g} = \frac{0.2 \text{ x T}}{6 \text{ x s}}$ $C_{gk} = \frac{0.1 \text{ x T} - \{\text{difference of labeled value \& mean}\}}{3 \text{ x s}}$

Requirement: $C_g \ge 1.33$ $C_{gk} \ge 1.33$

 New XRF developments enable requirements to be met with shorter measurement time



New XRF Developments

- Large Window Silicon Drift Detectors (SDD)
- Polycapillary Optics for focusing x-ray beam
- Choice of Tube Target
- Software Automation
 - Autofocus
 - Pattern Recognition
 - Data Export

Advantage of Solid-State Detector

- Improved signal <u>sensitivity for</u> <u>low Z</u> elements
- Improved <u>detection limits</u> down to nanometer or ppm level
- <u>Better separation</u> of overlapping elements
- Improved <u>stability</u> with minimal drift
- 10+ years life

Large Window Solid State Detector

Table 1. Meas	uring 2.06μin Αι	ι, 121μin Ni-P	(8%P) standard.
---------------	------------------	----------------	-----------------

	SiPin 24mil Collimator		Large-SDD 24mil Collimator	
Element	Au	Ni-P	Au	Ni-P
Average (µin)	2.08	120	2.06	121
Std Dev	0.023	0.458	0.014	0.268
Cg	3.44	8.60	5.67	14.7
C_{gk}	3.10	8.00	5.56	14.4

- SDD offers highest count rates and resolution
 - >50% higher than SiPin
- Lowest baseline noise
- Light element capability (i.e. P, Si, Al)
- Best for finishes <1 µm, complex films such as ENIG, EPIG, ENEPIG

Polycapillary Optics

- Sub-million to multi-million capillary channels
- X-ray passing through each channel is aligned to a high intensity point
- Perfect for very small features, down to 7.5µm spot size
- High flux density gain 100x higher than a pinhole collimator
- Improve precision of readings with shorter time.

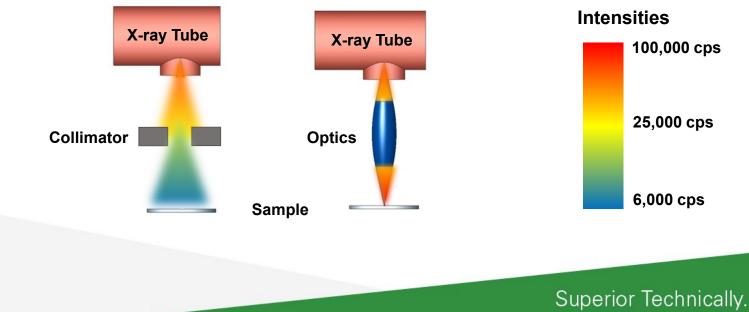
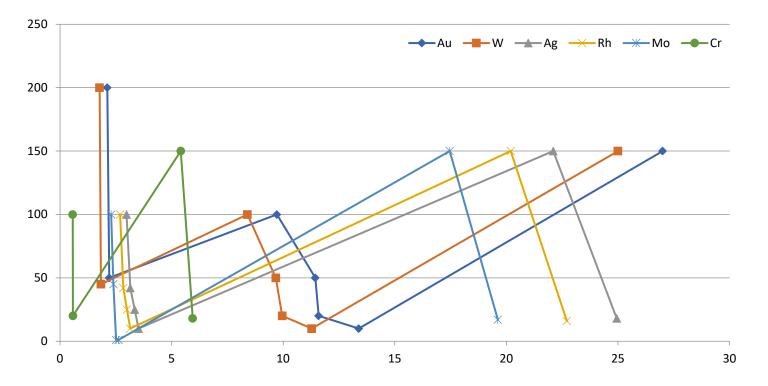

	80µm Optics,		15µm Optics	
Element	Au	Ni-P	Au	Ni-P
Average (µin)	2.06	121	2.05	121
Std Dev	0.015	0.155	0.010	0.107
Cg	5.27	25.5	7.51	36.7
C _{gk}	5.17	24.8	7.28	35.9

Table 2. Measuring 2.06µin Au, 121µin Ni-P (8%P) standard.

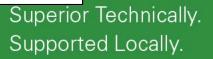
Polycapillary optics reduce the inverse square loss


- Intensity is inversely proportional to the square of the distance from the source of that physical quantity.
- 100x higher flux than collimated system at the same distance from the source.

Supported Locally.

Potential of Different Tube Target

Auto Focus (Laser)


- Quickly and automatically focus on samples
- Ensures each sample is measured at the same working distance
- Minimizes error from different operators

Pattern Recognition

- Corrects position when the measurement location is off
- Automatically find next measurement location
- Minimize operator error
- Speed of process Throughput

XYZ Programming

- Read parts in random, linear, or grid patterns.
 Just pick a start & end point.
- Datum reference points can compensate for up to <u>+</u>10° sample rotation

Superior Technically.

Supported Locally.

Allows for fast measurement of multiple pad
 locations

Automatic Data Export

- Automatically export data to XRF PC
 - Export at end of each test
 - Export data linked with unique identifiers (i.e barcode, part number)
- Fully customizable data export
 - Export raw data
 - Automatically generate reports

