Solder Limits:
Updating Them for the Age of Surface Mount

By Emma Hudson – PCB Industry Lead, EMEA+LA
ICT Evening Seminar - Harrogate – December 2017
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
What are Solder Limits?

- Solder Limits are one of the parameters used when Recognizing a PCB, a metal clad base material, or a solder resist / permanent coating.
What Are Solder Limits?

- Solder Limits represent the soldering processes the PCB will be exposed to during the component assembly operations.

- Any component assembly time spent over 100°C or the Maximum Operating Temperature (MOT), whichever is greater, is considered to be part of the Solder Limits.
 - Exception: If the PCB will only be subject to hand soldering then solder limits do not apply.

- Solder Limits can be a single time and temperature or multiple times and temperatures (Multiple Solder Limits – MSL).

- The Solder Limits are used in many test procedures when conducting the SAFETY evaluation of a PCB, so if the Recognized Solder Limits are exceeded in production it invalidates the Recognition (safety assessment).
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
How To Interpret Solder Limits?

• Need to measure any time spent over 100°C or the Maximum Operating Temperature (MOT), whichever temperature is higher, during component assembly to define the Solder Limits

For example:
How To Interpret Solder Limits?

- If a Flame-Only board type is Recognized with solder limits of 288°C for 20 seconds this means that the board is to spend no longer that 20 seconds between temperatures >100°C and ≤288°C.

\[
\text{Compliant} = t_2 - t_1 \leq 20 \text{ seconds}
\]

\[
\text{Non-Compliant} = t_2 - t_1 > 20 \text{ seconds}
\]
How To Interpret Solder Limits?

- If a Full Recognition board with an MOT of 130°C is recognized with solder limits of 288°C for 20 seconds this means that the board is to spend no longer than 20 seconds between temperatures of >130°C and ≤288°C.

\[
\text{Compliant} = t_2 - t_1 \leq 20 \text{ seconds}
\]
\[
\text{Non-Compliant} = t_2 - t_1 > 20 \text{ seconds}
\]
How To Interpret Solder Limits?

• **Flame-Only board Recognized with multiple solder limits of -**

<table>
<thead>
<tr>
<th>Cond Width Min (mm)</th>
<th>Cond Width Edge (mm)</th>
<th>Cond Thk Min (mic)</th>
<th>Cond Thk Max Int (mic)</th>
<th>Cond Thk Max Ext (mic)</th>
<th>SS/ Diam DSO (mm)</th>
<th>Max Area DS</th>
<th>Solder Temp Limits (C)</th>
<th>Solder Time Limits (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>20</td>
</tr>
</tbody>
</table>

- PCB to spend no longer than -

 1800 seconds between >100°C and ≤180°C
 +
 30 seconds between >100°C and ≤260°C
 +
 20 seconds between >100°C and ≤270°C

Note: the 20 seconds between 100°C and 260°C are supplemental to the 1800 seconds between 100°C and 180°C, the same with the 20 seconds between 100°C and 270°C. So, if the board spends 1830 seconds between 100°C and 180°C and only 20 seconds between 180°C and 260°C, this is still acceptable.
How To Interpret Solder Limits?

• If a Flame-Only board type is Recognized with multiple solder limits of -

<table>
<thead>
<tr>
<th>Width</th>
<th>Width</th>
<th>Thk</th>
<th>Max Int</th>
<th>Max Ext</th>
<th>SSI'</th>
<th>DSO</th>
<th>Diam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Edge</td>
<td>Min</td>
<td>(m/m)</td>
<td>(mic)</td>
<td>(mic)</td>
<td>DSO</td>
<td>(mm)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- 10800 seconds between >100°C and ≤180°C
- + 80 seconds between >100°C and ≤230°C
- + 10 seconds between >100°C and ≤260°C
- + minimum of 300 seconds at ambient
- + 10 seconds between >100°C and ≤260°C.

Note: the 20 seconds between 100°C and 260°C are supplemental to the 1800 seconds between 100°C and 180°C, the same with the 20 seconds between 100°C and 270°C. So, if the board spends 1830 seconds between 100°C and 180°C and only 20 seconds between 180°C and 260°C, this is still acceptable.
How To Interpret Solder Limits?

• Solder limits may be broken down between more than one process step

Example: Full Recognition PCB with MOT of 130°C Recognized with Solder Limits of

- 180°C / 10800 seconds
- 230°C / 80 seconds
- 260°C / 10 seconds

2 cycles of
5400 seconds between >130°C and ≤180°C
+ 40 seconds between >130°C and ≤230°C
+ 5 seconds between >130°C and ≤260°C

✓ Total time of the two cycles does not exceed the Recognized solder limits of the board
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
Why Are Solder Limits So Important?

• IPC D-32 Thermal Stress task group has shown that PCBs that pass a solder float test can fail during surface mount assembly soldering operations.

• PCB industry has been aware for a long time that the more severe the soldering operations are the greater the degradation of the PCB and this includes the properties evaluated for safety.

• To conduct accurate safety assessment of the PCB we MUST use Solder Limits that are representative for the actual soldering processes the PCB will see during assembly operations.
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
What Is UL Doing to Help the Industry?

- UL understands there are many different product specific soldering profiles, PCB manufacturers struggle to know which profile(s) to use for Recognition to meet all customer needs.

- UL to offer IPC-TM-650 2.6.27 T230 and T260 reflow profiles as a default option to represent SnPb and Pb-Free SMT soldering.
 - Will be optional and bespoke reflow profiles can be requested.
 - Can also include additional wave solder type soldering limits, e.g. 3x cycles of T260 + 288°C for 30seconds.
What Is UL Doing to Help the Industry?

• Suggesting a default of 3 cycles of desired reflow profile but up to the PCB manufacturer to decide for their Recognition
 • Can have as many or as few cycles as you wish but needs to be representative of the number of cycles it will see in production, which would include any required rework cycles

• UL are attempting to add a reference to these profiles into UL 796 for guidance
 • Due to the way standards are updated, by consensus, UL does not get to chose what goes into the standards so proposed revisions do not always happen

• UL are open to having other standardised profiles added to UL 796
 • Want to make it as easy as possible for the industry to adopt appropriate Solder Limits
 • We do not want plan to “invent” our own UL soldering profiles
Solder Limits: Updating them for the age of SMT

• What are Solder Limits
• How to interpret the Solder Limits
• Why are they so important
• What UL is doing to help the industry
• How to update your Solder Limits
• What is going to happen moving forward
How to Update Your Solder Limits

• Solder limits are used in nearly all of the testing we conduct on a PCB to grant Recognition, so testing will be required to make them more severe.
How to Update Your Solder Limits

Base Materials

<table>
<thead>
<tr>
<th>Bond Strength & Delamination</th>
<th>First Base Material</th>
<th>Subsequent Base Materials</th>
<th>Subsequent Base Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Recognition PCB</td>
<td>Flame-Only PCB</td>
<td>Full Recognition PCB</td>
</tr>
<tr>
<td>Bond Strength & Delamination</td>
<td>Yes</td>
<td>N/A</td>
<td>Check to see if CCIL Program requirements are met</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCIL Met = DOMSA on each material</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCIL Not Met = BDMSA on each material</td>
</tr>
<tr>
<td>Bond Strength & Delamination</td>
<td>Yes</td>
<td>Yes</td>
<td>Check to see if CCIL Program requirements are met</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCIL Met = no additional V testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCIL Not Met = V testing on each material</td>
</tr>
</tbody>
</table>

BDMSA - 10/56-day Bond strength and delamination testing with micro-section analysis
DOMSA - 10/56-day Delamination testing with micro-section analysis
V - UL 94 Vertical Flammability testing

- All CCIL Program comparisons include checking the Solder Limits Recognized for the Metal Base Material against those Recognized for the PCB. If the Metal Base Material has less severe Solder Limits than the PCB the CCIL Program cannot be used.
How to Update Your Solder Limits

Solder Resists

<table>
<thead>
<tr>
<th>Flammability</th>
<th>First Solder Resist</th>
<th>Subsequent Solder Resists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Check to see if Permanent Coating Program requirements are met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Coating Program Met = no additional V testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Coating Program Not Met = V testing on each material</td>
<td></td>
</tr>
</tbody>
</table>

V - UL 94 Vertical Flammability testing

- All Permanent Coating Program comparisons include checking the Solder Limits Recognized for the Solder Resist against those Recognized for the PCB. If the Solder Resist has less severe Solder Limits than the PCB the Permanent Coating Program cannot be used.
How to Update Your Solder Limits

• CCIL Program & Permanent Coating Program will be available after initial testing BUT most materials are NOT Recognized with suitable Solder Limits for these no test / reduced test programmes to be used in combination with SMT soldering profiles

• PCB Manufacturers need to push their suppliers to Recognize their materials with suitable Solder Limits, otherwise more testing for the PCB manufacturer

• If CCIL Program & Permanent Coating Program cannot be used we have to test everything

• Strongly recommend Recognizing any new PCB with the new solder limits, whether materials are Recognized with these requirements or not
Solder Limits: Updating them for the age of SMT

- What are Solder Limits
- How to interpret the Solder Limits
- Why are they so important
- What UL is doing to help the industry
- How to update your Solder Limits
- What is going to happen moving forward
What is Going to Happen Moving Forwards?

• UL shall actively communicate this message to all relevant parties
 • PCB Manufacturers
 • Material Manufacturers
 • Recognized PCB Assemblers
 • OEMs with UL Listed products

• UL shall try and have UL 796 updated, so the standardised profiles are clear for everyone
 • Although this is not required for manufacturers to start requesting to use these soldering profiles
 • If you feel it is useful to have the standardised profiles in the UL standards reach out to the Standards Technical Panel (STP) members
What is Going to Happen Moving Forwards?

UL Follow Up Services (FUS)

• They must ask to see evidence of the soldering profiles used for the PCBA

• They will confirm that the soldering processes the PCB have been exposed to do not exceed the Recognized solder limits and invalidate the Recognition

• 2018
 • If soldering profiles show the soldering processes exceeded the maximum solder limit temperature a Variation Notice will be raised
 • If the soldering profiles show the soldering processes exceeded the maximum solder limit time the inspector will inspect the surface of the board, if no visual damage no Variation Notice will be raised BUT the OEM / Assembler will be informed that they MUST resolve this matter such that both the Solder Limit time and temperature are in compliance

• 2019 onwards
 • Any time a Recognized PCB is being exposed to soldering processes exceeding the Recognized Solder Limits a Variation Notice will be raised
Summary:

- Solder Limits represent the soldering processes the PCB will be exposed to during assembly
- The traditional solder float conditions do NOT represent the current SMT soldering processes
- Industry knows that PCBs can pass tests using the solder float test that cannot pass when SMT soldering processes are used, so using inaccurate Solder Limits for SAFETY testing is not acceptable
- UL will be offering standardised soldering profiles for Solder Limits to try and make their implementation easier for the industry
- Recognized PCBs need to start being evaluated using appropriate solder limits otherwise the OEM / Assembler will encounter problems
- When you are ready to improve your Solder Limits contact UL for assistance – do it before your customer contacts you!
THANK YOU

For more information please contact:

Emma.Hudson@UL.com
+44 (0)7469 088872
or visit http://europe-ul.com/